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Abstract 

The Johnson-Mehl-Avrami equation is frequently used for analysis of experimental data of non- 
isothermal crystallization kinetics although this theoretical model has limited applicability for the 
non-isothermal transformations involving nucleation and growth. It is shown that the applicability 
of this model should be tested by reliable methods before a quantitative analysis of non-isothermal 
crystallization data is made. Such testing methods are described and their uses are demonstrated. 
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1. Introduction 

The rather elaborate nature of classical isothermal experimental procedures used to 
study crystallization kinetics in glasses is probably one of the major reasons for the in- 
creasing popularity of thermoanalytical techniques (TA), such as differential thermal 
analysis (DTA) or differential scanning calorimetry (DSC). Generally, the experimental 
TA data are analyzed within the framework of the formal theory of nucleation and 
growth, and then the Johnson-Mehl-Avrami (JMA) equation is applied. However, the 
JMA equation was developed to describe isothermal conditions and it can be applied to 
the description of non-isothermal TA data only in a limited number of special cases. 
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Therefore, the development of simple, quick and reliable tests of the applicability of the 
JMA equation are of great practical importance. This is primary purpose of the present 
work. 

2. The JMA transformation equation 

The theoretical basis for the description isothermal crystallization of glasses involving 
both nucleation and growth was formulated by Volmer and Weber [ 11, Johnson and Mehl 
[2], and Avrami [3-51. A similar formalism was also developed by Kolmogorov [6]. A 
very good review has been given by Christian [7]. In its basic form, the theory describes 
the time dependence of the fractional extent of crystallization, a. The resulting equation 
is known as the Johnson-Mehl-Avrami (JMA) equation, and is usually written in the 
following form: 

a = 1 - exp(-kt”) (1) 

where k and n are constants with respect to time, t. Eq. (1) can be used to describe the 
transformation kinetics of many solid state processes under isothermal conditions. For 
some simple cases of crystallization it is possible to find a characteristic value of the ki- 
netic exponent, n, as shown in Table 1 [7]. 

Table 1 
The values of kinetic exponent typical for various crystallization processes in isothermal conditions, after 
Christian [7] 

Transformation n 

(1) Polymorphic changes, discontinuous precipitation, eutectoid reactions, interface controlled growth etc. 
Increasing nucleation rate >4 
Constant nucleation rate 4 
Decreasing nucleation rate 34 
Zero nucleation rate (site saturation) 3 
Grain edge nucleation after saturation 2 
Grain boundary nucleation after saturation 1 

(II) Diffusion controlled growth 
All shapes growing from small dimensions 
Increasing nucleation rate 
Constant nucleation rate 
Decreasing nucleation rate 
Zero nucleation rate 

>2.5 
2.5 
1.5-2.5 
1.5 

Growth ofparticles of appreciable initial volume 
Needles and plates of finite long dimensions 
Thickening of long cylinders (needles) 
Thickening of very large plates 

1 
1 
0.5 
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Eq. (1) can also be written in a somewhat different form: 

a = 1 - exp[-(Kt)R] (2) 

The kinetic exponent has the same value in both equations and the constants k and K can 
be easily converted into each other. The expression in the form of Eq. (2) is used more 
often because it simplifies subsequent calculations. The isothermal crystallization rate 
equation (sometimes referred to as the JMA rate equation) can be determined from Eq. 
(2) by differentiation with respect to time: 

daldt = K.n( 1 - a)[-ln( 1 - a)]] - i/n (3) 

It should be emphasized, however, that the JMA equation as expressed by Eqs. (l), (2) 
or (3) is based on several very important assumptions: 
(1) isothermal crystallization conditions; 
(2) homogeneous nucleation or heterogeneous nucleation at randomly dispersed second 

phase particles; 
(3) growth rate of new phase is controlled by temperature and is independent of time. 

These three assumptions should be carefully considered before the JMA equation is 
used for the description of experimental data and any conclusions concerning the growth 
morphology are made. Even in the case that all above assumptions are fulfilled, some 
complementary information (other than just the value of n) are needed for determination 
of the real mechanism of the crystallization process. Recent computer simulations of 
crystallization kinetics of randomly oriented ellipsoidal crystals revealed, for example, 
that for higher crystal anisotropy the dimensionality of growing crystals cannot be un- 
ambiguously determined from the value of the kinetic exponent [ 81. 

3. Application of the JMA equation in non-isothermal conditions 

It has been shown by Henderson [9,10] and also by DeBruijn et al. [ 1 l] that the valid- 
ity of Eqs. (2) and (3) can be extended to non-isothermal applications if the crystals of a 
new phase grow from a constant number of nuclei and all nucleation is completed prior 
to crystal growth. Usually it is expected that the rate constant K in Eqs. (2) or (3) has a 
simple Arrhenius behavior with respect to temperature during the crystallization process: 

K = A exp(-EIRT) 

where A is the pre-exponential term, E is the activation energy, R is the gas constant and 
T is the absolute temperature. In this case, however, both the nucleation frequency and 
crystal growth should have the same (i.e. Arrhenian) temperature dependence. However, 
this does not seem to be highly probable. From the classical nucleation theory, it follows 
that the nucleation frequency is strongly temperature dependent, and generally, is very 
far from Arrhenian [ 121. On the other hand, there are some reasons for assigning an Ar- 
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rhenian temperature dependence to the crystal growth rate. Particularly, in the range of 
large undercoolings of congruently melting systems, crystal growth rate is inversely pro- 
portional to the viscosity of the undercooled melt [ 131. The temperature dependence of 
viscosity of mzny glass forming liquids can be considered Arrhenian, particularly in a 
narrow temperature range where the macroscopic crystal growth is usually observed. 

The complicated temperature dependence of the nucleation frequency can be ne- 
glected in the case of so-called site saturation [14], when the entire nucleation process 
takes place during early stages of the transformation and becomes negligible afterwards. 
In this case, the crystallization is an isokinetic process [ 141. Thus the crystallization rate 
is defined only by temperature and it does not depend on the previous thermal history. 
Under these circumstances, the transformation equations, Eqs. (2) and (3), will hold also 
in non-isotherm@ conditions. Some problems arise in the case of glass-forming systems 
exhibiting high entropies of fusion. Jackson et al. [ 151 has shown that the secondary nu- 
cleation can take place during the growth process. In this case, the applicability of Eqs. 
(2) and (3) in non-isothermal conditions should be critically examined. 

Thermal analysis techniques such as DTA or DSC have become extremely popular 
methods for studying the crystallization of glasses in non-isothermal conditions. It is as- 
sumed that the measured quantity, i.e. the temperature difference between the sample and 
temperature (for DTA) or heat flow (for DSC) are proportional to the crystallization rate 
daldt. This assumption requires that the sample temperature is homogeneous and the 
growth interface is negligibly affected by the liberation of the heat of crystallization [lo]. 
In the case of DTA, the heating rate, p, changes during the crystallization process. This 
should be taken into account, especially for larger sample masses and higher heating 
rates where thermal inertia effects play an important role. For the low crystal growth 
rates and small latent heat of fusion it is reasonable to assume that both the crystallization 
rate, daldt, and the fractional extent of crystallization, a, can be obtained directly from 
thermoanalytical (TA) data [ 181. 

Experimental TA data are usually interpreted within the JMA model. It should be 
clearly said, however, that this can be done only in a few cases when the aforementioned 
conditions are fulfilled. The rate equation used for the description is obtained by combin- 
ing Eqs. (3) and (4): 

da/dt = A exp(-x2f(a) (5) 

where x = EIRT and f(a) = n( 1 - a)[-ln( 1 - a)]’ - lln. These substitutions are introduced 
to simplify the subsequent formula. 

One of the typical mathematical properties of Eq. (5) is that the Arrhenius parameters 
are strongly correlated, which means that virtually any TA curve can be interpreted 
within the scope of several kinetic models by simply varying the activation energy or 
pre-exponential term [20]. Therefore it is very problematic to use non-linear or multiple 
linear regression methods for the analysis of TA data assuming a priori the validity of the 
JMA model. From this point of view, it seems to be important to find reliable testing 
methods in order to check the applicability of the JMA model in the analysis of non-iso- 
thermal TA data. 
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4. How to test the applicability of the JMA model 

Probably the most popular testing method is an inspection of the linearity of the dou- 
ble logarithmic plot of ln[-ln(1 - a)] as a function of reciprocal temperature l/T, which 
was introduced by Satava [17] for analysis of non-isothermal TA data. This method in- 
volves some substantial simplifications inherent to the non-isothermal formalism and, 
therefore, it should not be confused with an Avrami plot, i.e. the dependence of ln[- 
ln( 1 - a)] as a function of time. It is useful to briefly review the derivation of this testing 
method. 

Integration of Eq. (5) in non-isothermal conditions yields 

[-ln(l-a)]i/n =$n(x).A.exp(-x) (6) 

where j3 is the heating rate and n(x) is an approximation of the temperature integral [ 181, 
which has to be introduced because the exponential term in Eq. (5) cannot be integrated 
analytically. The rational expression of Senum and Yang [19] is a good compromise 
between relative simplicity on the one hand and the accuracy of approximation on the 
other: 

n(x) = 
x3 +18x2 +88x+96 

x4 +20x3 +120x2 +240x+120 

Taking the logarithm of Eq. (5) the following equation is obtained: 

[ I 
n 

ln[- ln(1 -a)] = In %r(x) -g 
P 

(7) 

(8) 

Thus, assuming that the term ln[ATJt(x)@]” is a constant, a plot of ln[-ln( 1 - a)] as a 
function of reciprocal temperature l/T should be linear, having a slope -nE/R. It must be 
emphasized that at least two problems exist if this method is used as a test of the appli- 
cability of the JMA model. The first problem arises if for some reason the temperature 
dependence of the term ln[ATJt(x)@]” cannot be neglected. Then, the corresponding plot 
will not be linear even in the case that the JMA model is valid. The second problem is 
associated with the double logarithmic scale itself. It is well known that a double loga- 
rithmic function, in general, is not very sensitive to subtle changes to its argument. 
Therefore, one can expect that the plot ln[-ln(1 - a)] versus l/T could be linear even in 
the case of kinetic models other than the JMA. To demonstrate the possibility of a such a 
wrong interpretation of experimental data, a theoretical TA curve was calculated using 
Eq. (5) for the Jander’s D3 model [18]: f(a) = 3[(1 - ~r)~]/(2[1 - (1 - a)1’3]). This TA 
curve was subsequently analyzed in terms of the double logarithmic plot as shown in Fig. 
1. It is seen that data are almost linearly correlated (correlation coefficient is 0.999), and 
therefore, it could lead to the erroneous conclusion that the JMA model can be used in 
this case. Thus, the general applicability of the double logarithmic plot for analysis of 
non-isothermal data should be carefully examined. 
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Fig. 1. Double logarithmic analysis of TA curve calculated for the Jander’s D3 model (E= 100 kJ mol-‘, 
In A = 20 1 s-l, #I = 10 K min-‘) as shown in the inset. 

Another test of the applicability of the JMA model was proposed by Henderson [lo]. 
He has shown that the fractional extent of crystallization at the maximum of the TA peak, 
aP, should be close to 0.63 in the case of the JMA model and that it depends only weakly 
on the kinetic exponent n and the heating rate B. This conclusion was recently analyzed 
and revised [20], and it was found that the general formula for the maximum of the TA 
peak can be written as 

-f’@,Ma,> = xfl(xJ (9) 

wheref’(ar) = df(a)/da and g(a) = Ida/f(a). These two functions can easily be found for 
the JMA model. After substitution into Eq. (S), the explicit expression for the fractional 
extent of crystallization at the maximum of TA peak aP is obtained: 

aP =1-exp ( 1 - x,Jo, > 
-1 

n 1 

Thus, the parameter a,, does not depend on the heating rate but it depends on both xP and 
II. This dependence becomes more important with decreasing xP, particularly for low val- 
ues of kinetic exponent n as shown in Fig. 2. Therefore, this test should be applied care- 
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Fig. 2. The dependencies of fraction crystallized at the maximum of the TA peak as a function of E/RTp for 
different values of kinetic exponent of the JMA model. The dashed lines show the limits of the maximum of 
the z(a) function. 

fully and one should bear in mind as stated by Henderson [lo], “a more rigorous check of 
the validity would of course be the direct calculation of the JMA transformation rate 
equation using experimentally determined kinetic parameters and a subsequent direct 
comparison with experimental trace”. 

We also believe that the best method is to directly compare theoretically calculated 
and experimental curves. Unfortunately, this is comparison is still very rare in the litera- 
ture regardless of the immense development of computational facilities in recent years. 
From this point of view, simple and reliable testing methods for the applicability of the 
JMA model have practical importance. Some suggestions in this respect are given below. 

5. The maximum of the z(a) function 

By substituting Eq. (5) into Eq. (6) the function z(a) can be defined as follows[20]: 

z(a) =f(a>g(a) = (da/dt>~[n(x)//IrJ (11) 

It can easily be shown that the z(a) function has a maximum at apm defined by the equa- 
tion: 
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-f’@,->da,=Y = 1 

(This equation is identical with Eq. (9) for infinite xP because in this case 

(12) 

,“n+ra x,x(x,) = 1 
P 

This is also the reason why the maximum of the z(a) function is usually labeled apm. In 
fact, the maximum of the z(a) function corresponds to that of TA peak for infinite xr.) 
The solution of Eq. (12) for the JMA model gives the value an- = 0.632 which is constant 
for any value of the kinetic exponent n. It was found by numerical simulations that the 
[+)//IT] term in Eq. (11) has a negligible influence on the shape of the z(a) function. 
Therefore, the expression for the z(a) function can be substantially simplified: 

z(a) = (daldt)P (13) 

Using this equation, the z(a) function can be obtained by a very simple and quick trans- 
formation of the experimental data just by multiplying the crystallization rate by p’. This 
can be done without needing to know any kinetic parameter. In this case, the maximum 
of the z(a) function should be confined to the interval: 0.62 < ar,- < 0.64 as shown in Fig. 
2 by broken lines. Although the range of maximum values of the z(a) function is broader, 
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Fig. 3. The normalized TA curve and z(a) function for the TA curve calculated for the JMA model (n = 0.5, 
E = 100 kJ mol-‘, In A = 20 I s-l, 5 = 10 K min-‘) as shown in the inset. 
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when compared with the theoretical value of 0.632 corresponding to a more exact ex- 
pression defined by Eq. (1 l), it is still possible to unambiguously determine the JMA 
model by a simple transformation of experimental TA data applying Eq. (13). 

To illustrate the practical application of this simple test, a theoretical TA curve corre- 
sponding to the JMA model was calculated. Fig. 3 shows both daldt and the z(a) values 
normalized within the interval (0,l) and plotted as a function of the fractional extent of 
crystallization, a. As expected, the maximum of the z(a) function (full line) is at 

aP m = 0.625, corresponding well to the JMA model. (The difference from theoretical 
value 0.632 is caused by an approximation of the n(x) function (Eq. 7) used to calculate 
the theoretical TA curve for the JMA model; see inset of Fig. 3.) On the other hand, the 
maximum of the normalized daldt curve (broken line) is ap = 0.575. According to 
Henderson’s testing method [lo]. this value could be erroneously interpreted to mean 
that the data does not correspond to the JMA model. The z(a) function eliminates any 
ambiguities in this respect. It is convenient, however, to compare z(a) functions for sev- 
eral measurements taken at different heating rates. If normalized plots have identical 
shapes with a maximum within the range 0.62 < ap” < 0.64 then TA data can be probably 
described within the JMA model. 

6. Shape index analysis 

The analysis of the shape of TA curves from the kinetic point of view dates back to 
1957, when Kissinger [21] tried to determine the reaction order of some decomposition 

Temperature 

Fig. 4. Method for the determination of the shape index S from a TA curve. 
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processes by analyzing the shape of the TA curve. The shape index was defined as shown 
in Fig. 4. Several papers have since been published concerning the shape index analysis 
of TA curves [22,23]. Recently, it was found by numerical simulations [24] that there is a 
linear relationship of the shape index versus the inflection temperature ratio (T,IT,). This 
relationship can be described by the equation 

s = s== + K[(T,IT,] (14) 

where K and S- are constants for a given kinetic model. The intercept P corresponds to 
the shape index for the infinite value of x = EIRT. It can be expressed analytically in the 
form 

(15) 

where a, and a2 are fractional extents of crystallization at the inflection points of the TA 
curve. This linear relationship between S and T,IT, is shown in Fig. 5 for the JMA model. 
In this case the constants in Eq. (14) have the following values: s” = 0.521 and 
K = 0.9 16. It should be stressed that for the JMA model the shape index is determined by 
the T,lT, ratio only and it is not influenced by the value of the kinetic exponent or other 
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Fig. 5. The dependence of the shape index versus the ratio of temperatures at the inflection points for the JMA 
model. The points correspond to the TA curves shown in Figs. 1 and 3. 
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parameters. Because both the shape index and temperature corresponding to the inflec- 
tion points can easily be determined from an experimental TA curve (or its derivative), 
this method can also be used for a quick test of the applicability of the JMA model for 
particular TA data. This is demonstrated in Fig. 5 (points) for TA curves shown in the 
insets of Fig. 1 and Fig. 3. 

7. Empirical kinetic models 

In some cases, it is convenient to use more flexible empirical kinetic model functions, 
j(a), for the description of the crystallization process. The advantage of such an approach 
is that it is possible to describe experimental TA data even in the case when some of the 
basic assumptions for the validity of the JMA model are no longer held. These models 
can also be understood in terms of the accommodation function introduced by Sestak 
[25], expressing a deviation from the ideal case due to a more complex transformation 
process. In this respect, it is very convenient to use the Sesdk-Berggren function [26,27] 

f(a) = a”( 1 - a)N (16) 

This two parameter function, in fact, also includes the JMA model for n 2 1 as shown in 
Fig. 6. Thus, if the JMA model can be applied, then the kinetic exponents, M and N, 

Fig. 6. The combinations of parameters M and N in F.q. (16) corresponding to the values of the kinetic expo- 
nent n for the JMA model as shown in Table 1. 



72 J. Mdlek / Themochimica Acta 267 (I 995) 61-73 

should correspond to the broken line in Fig. 6. This can also be considered as an alterna- 
tive test of the applicability of the JMA model. On the other hand, the departure from the 
broken line reveals the degree of departure from the JMA model. The Sestak-Berggren 
empirical kinetic model can be used for a quantitative description of more complicated 
processes involving both nucleation and growth. Calculated kinetic parameters can be 
used for the construction of time-temperature-transformation (TTT) diagrams in order to 
predict the behavior of the system under isothermal conditions. From this point of view, 
the kinetic exponents M and N in Eq. (16) are characteristic for a particular crystalliza- 
tion process although it is rather problematic to find their physical meaning. It was shown 
[28], however, that physically meaningful values of the parameter M should be confined 
intherangeO<M< 1. 

8. Conclusions 

The great number of analyses of non-isothermal TA measurements of crystallization 
processes which have been published in the literature have suggested the description 
within the JMA model. Nevertheless, this model is based on several important assump- 
tions and therefore its practical applicability is restricted to particularly simple cases 
where the site saturation condition is fulfilled. Hence, any quantitative analysis of ex- 
perimental TA data should be preceded by a rigorous check of the validity of the JMA 
model. Two simple methods are proposed for such purpose. It is shown that the maxi- 
mum of the function z(a) = (da/dt)p should be confined to the interval 0.62 < cxr” < 0.64 
in the case of the JMA model. An alternative method of testing is based on the linear 
relationship of the shape index of TA curve versus the inflection temperature ratio 
(TZ/Ti), which can be written for the JMA model: S = 0.521 + 0.916(T2/T1). If these test- 
ing methods reveal that the JMA model cannot be applied, e.g. because of considerable 
overlap of nucleation and growth processes, then the two parametric Sestak-Berggren 
empirical equation can be used for a quantitative description of the overall crystallization 
process. 
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